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Abstract
Let p be a prime and g = p®. We discuss the properties of the reversed Dickson polynomial
D,, 2(1,x) of the third kind. We also give several necessary conditions for the reversed Dickson
polynomial of the third kind D,, »(1, ) to be a permutation of F,. In particular, we give explicit
evaluation of the sum ) acF, D, »(1,a).
Keywords: Finite field, Permutation polynomial, Dickson polynomial, Chebyshev polynomial,

Integer sequence.

Introduction
Let p be a prime and g a power of p. Let F,; be the finite field with ¢ elements. A polynomial
f € Fylx] is called a permutation polynomial (PP) of F, if the mapping x + f(z) is a permutation
of Fq. In the study of permutation polynomials over finite fields, Dickson polynomials have played
a pivotal role.

The n-th Dickson polynomial of the first kind D, (z, a) is defined by

«* n_(n—i i,.n—2i
Dn(£: a) = . - . (_a) x ’

where a € Fy is a parameter.

The permutation property of the Dickson polynomials of the first kind is completely known.
When a =0, D, (z,a) = 2", which is a PP over F, if and only if (n,q—1) = 1. When 0 # a € F,,
D, (z,a) is a PP over F, if and only if (n,¢* — 1) = 1; see Theorem 7.16 in Lidl et al. 1997 or
Theorem 3.2 in Lidl et al. 1993.

The n-th Dickson polynomial of the second kind E,,(x,a) is defined by
L8l
E (z s d A\ n—2i
n(z,a) Z( ; )( a)'z 3
i=0
where a € F, is a parameter.
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The permutation behavior of the Dickson polynomials of the second kind has been exten-
sively studied by many authors. We refer the reader to Cohen (1994) for more details about the
Dickson polynomials of the second kind.

Dickson polynomials are closely related to the well-known Chebyshev polynomials over the

complex numbers by
D, (22,1) = 2T, (x) and E.(2z,1) =U,(z),

where T, (x) and U, (z) are Chebyshev polynonmials of degree n of the first kind and the second
kind, respectively.

The n-th reversed Dickson polynomial of the first kind D, (a,2) was first introduced by
Hou, Mullen, Sellers and Yucas in Hou et al. 2009 by reversing the roles of the variable and the
parameter in the n-th Dickson polynomial of the first kind D, (z,a). It was shown that when

a =0, D,(0,2) is a PP over F, if and only if n = 2k with (k,q — 1) = 1. Also, when a # 0,

T
D =a"D,(1, =).
() =a" Dy (1, 2)

Hence D, (a,z) is a PP on Fy if and only if D, (1, z) is a PP on F,.

In Hou et al. 2010, Hou and Ly further studied the reversed Dickson polynomials of the
first kind D,,(1,2) and explained several necessary conditions for D, (1, ) to be a permutation of
F,.

Recently, Hong, Qin, and Zhao studied reversed Dickson polynomials of the second kind in
Hong et al. 2016. They presented several necessary conditions for the reversed Dickson polynomial
of the second kind E,, (1, z) to be a permutation of F,.

In Wang et al. 2012, Wang and Yucas introduced the n-th Dickson polynomial of the
(k + 1)-th kind and the n-th reversed Dickson polynomial of the (k + 1)-th kind.

For a € I, the n-th Dickson polynomial of the (k + 1)-th kind D,, ;(x,a) is defined by

L] , .
—kifn—i _ ,
Dy (s a) = Z n — ki (n . 7) (—a)iz™ 2.

n—1 7
i=0

For a € Fy, the n-th reversed Dickson polynomial of the (k4 1)-th kind D,, 3 (e, ) is defined

by
(l) D ( )—%“_ki n—i ( )i n—24
n k@, T) = 2 P i r)a .
Then clearly Dy, o(a,z) = Dy(a,z) and D, 1(a,z) = E,(a,z). In Wang et ol. 2012, they
defined
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(2) Dog(a,x)=2—k.

They also showed that D, (z,a) = k&, (x,a) — (k — 1) D, (x,a). A simple computation

shows that the reversed Dickson polynomials agree with the above equation as well, i.e.
(3) D.,.,‘k.(a,:i:) - kEn (a'lli) - (k' - 1)D'n(a'7 ‘T)

In Wang et al. 2012, Wang and Yucas completely described the permutation behavior of
the Dickson polynomials of the third kind D, 2(z,a) over any prime field, but the permutation
property of D, 2(x,a) over an arbitrary {inite field is still an open problem.

The purpose of the present paper is to explore the permutation behavior of the reversed
Dickson polynomials of the third kind. By (1), the n-th reversed Dickson polynomial of the third

kind D,, o(a, x) is given by

L2) . .
(4) Dn’g(a, I) = n- 2? (TL z_ 2) (_:E)‘ianfm_

n—1
=0

w3

Throughout the paper, we denote the n-th reversed Dickson polynomial of the third kind
D, 2(a,z) by F,(a,z). Here is an overview of the paper.

In the next section, we present several properties of the reversed Dickson polynomials of
the third kind. After that, we survey some miscellaneous necessary conditions for £, (a, z) to be a
permutation of F,. In the last section, we compute the sum zueﬂ F,(1,a).

Reversed Dickson polynomials of the third kind

We study the properties of reversed Dickson polynomials of the third kind in this section.

Lemma 1. F,(a,z) is not a PP when a = 0.

Proof. When a = 0, the reversed Dickson polynomials of the first kind satisfy (See Hou et al.
2009)

0 if n1s odd,
D, (0,z) =

2(—=z)¥ if n =2k,

and the reversed Dickson polynomials of the second kind satisfy (See Hong et al. 2016)

0 if n is odd,
E,0,1) =

(—x)* ifn =2k
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From (3), we have F,(0,2) = 2F,(0,2) — D, (0, 2) which implies F,(0,2) = 0 for all n. Hence

F,(a,x) is not a PP when a = 0.

We thus hereafter assume that a € F}.

Lemma 2. For a # 0, Let x = y + ay™" for some y € Fpz with y # 0 and y* # a. Then the

Sunctional equation of F,(a,x) is given by

Fo(a,z) = 2ya_ a(y”‘ —(a—y)"), where y # %.
Proof. Note that
Dy(a,z) =y" + (a—y)"
and
PR _ n+1
Epa,z) = Y —a=9™

2y—a
are the functional expressions of the reversed Dickson polynomial of the first kind and second kind,

respectively. Hence the rest of the proof immediately follows from (3). O

Let a € F}. Then it follows from (4) that

€T

(5) Fola,z) = a" Fa(l, —).
a
Hence F,,(a,z) is a PP on I, if and only if F},(1,z) is a PP on [F,.

Theorem 3. let p be an odd prime, n and k be positive integers. Then we have the following.

no__ 1_’ n
(1) If y # &, then Fy(1,y(1 —y)) = %’21}(771’!)

(2) If ged(n, k) =1, then F,u(1,2) = (F,(1,2))"" (1 — 4z)" = .

np®

(3) Ifm =mny (mod ¢* — 1), then Fy, (1,20) = Fo,(1,20) for any xo € Fg \ {{}.

. Also, Fio(1,1) = 52+,

Proof.

et a = In Lemma. 2, and write & = - . en 1or 5. We nave
1) L 1in L 2, and wri y(1 —y). Then for y # 3, we h

Fu(1y(1 - y)) = y;y(%ly)

When a = 2 and 2 = 1, from (5) we have

1

F.(2,1)=2"F,(1, ;1)

which implies
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We have D, (2,1) =2 and £,(2.1) = n+ 1 (See Lidl et al. 1993). Then it follows from

(3) that
Fo.(2,1)=2F,(2,1) - D,(2,1) =2(n+1) — 2 = 2n.
Hence
1 n
F,(1,-)= .

(2) Let @ = y(1 —y) with y # 5. Then we have

R e )

Fri,pk(lrll):an*'(lay(l_y)) = 2?}71

k
(" —(1-y")y
2y —1

(y" — (1 -y "
ECTEN (2y —1)» !

vt Ay e k1
— 2 — 1)P
( 3y 1 o2y —-1)

k

= (F(Ly(l - )P (2y — 1P
= Fu(La)” (2y - 1"

Pk

= Fn(l,;r)plc (1—4dx) = :

Ity = %, then

1 np® k Pk -1
Fope(1, i) = o 1= 0=F,(1,z2)" (1—4z) =

(3) For @ € Fy\ {%} there exists yg € Fye \{%} such that xy = yo(1 — y). Then we have

oyt = =yo)™

Fnl(lamlJ)_ 2y0_1
Qyo -1
= Fﬂz(l,.’lf:u)

O

Remark 4. If char(Fy) = 2, then F,(1,z) is the n-th reversed Dickson polynomial of the first

kind D, (1, z) since from (1) in Theorem 3 we have
F,(l,z(l—a)=2"+ (1 —2)" = D,(1,2(1 — x)).
We thus hereafter always assume, unless specified, in this paper that p is odd.
Proposition 5. Let p be an odd prime and n be a non-negative integer. Then

Fo(l,z) =0, Fi(l,2) =1, and
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E(lLa)=F,_1(1,2) —x F,,_2(1, ), forn > 2.

Proof. 1t follows from Theorem 3 (1) that Fy(1l,2) =0, Fi(1,z) = 1.

Let n > 2. When z # %, we write z = y(1 — y) with y # % By Theorem 3 (1), we have

Fooi(lw) =2 Fua(lz) = Fooa (Ly(1 = 9)) — y(1 —y) Fu—a(1,y(1 — )

_ ynfl _ (1 _ y)n.fl B y(l B y) y'nfi _ (1 _ y)n72
2y—1 2y—1

yt - (1 —y)"
— I B - ) = F(1,2),
‘When .1::%,
1 1 1 n—1 1n-—2 n 1
Foa(1,=)==Fp o(l,~) = —— — — = — = F,(1,-).
noa(lg) =g Fe(b P = 5o — g5 = gar = Fallig)

|

Theorem 6. Let p be an odd prime. q = p®, e,k € ZT, 1 < k <e. Then Fyi(l,x) is a PP of I,

if and only if (Pk,;l,qf 1_) =1.

Proof. Let n = 1 in Theorem 3 (2). Since Fi(1,z) = 1, we have F,x(1,z) = (Fl(l,:,c))pk(l -

R 1

4x) 2

k_
=(1- 4:1:)1)71. Hence the proof. O

Theorem 7. Let p be an odd prime. q =p°, e,k € Zt, 1 <k < e. Then Fyp(1,) is a PP of Fy

if and only if (#Sq— l) =1.

Proof. Let n = 2 in Theorem 3 (2). Since Fy(1,2) = 1, we have Fy(1,2) = (Fy(1,2))P" (1 —

e o
42)"75 = (1 - 4z)"% . Hence the proof. O

Theorem 8. The generating function of F,,(1,z) is given by

2 Rl =y
Proof.
(1—2z+ .1:22) Z F.(1,z)" = Z F.(l,z)z" — Z F.(1,z) 2 4 g Z F.(1,x) 2" +?
n=0 n=0 n=0 n=0

= FU(l,w) + Fl (1,37)2 — FU(L.'L')Z

oo

+ 3 (Foga(l,2) = Fuga(1,2) + 28, (1,2)) 2"
n=>0

Since Fy(1l,z) =0, Fi(1,2) = 1, and Fyya(1,2) = Frea(l,2) — 2F, (1, 2) for n > 0, we have the

desired result. O
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Lemma 9. (See Hou et al. 2009) Let ¢ = p® and Let x € F2. Then
z(l—z)elF ifandonly if e =z or 2 =1 —a.
Also, if we define
V={rveFp;z'=1-=z},
then F, NV = {1}.

Theorem 10. Let p be an odd prime. Then F,(1,x) is a PP of ¥, if and only if the function

Yyt — (1" Y- (1 —y)" y
2y — 1 2y — 1
ye (F,UV)\ {3}

y = is a 2-to-1 mapping on (F, UV)\ {3} and for any

Qﬂ—l

Proof. For necessity, assume that F,,(1,2) is a PP of F, and y;,y. € (F, UV)\ {'5} such that
v = —y)" oy (1 -y ) _

2y —1 = g —1 Then yi(1 — y1),92(1 — y2) € Fy and Fo(Lyn(l — 1)) =
Fo.(1,y2(1 — y2)). Since F,(1,z) is a PP of Fy, we have y1 (1 — 1) = y2(1 — y2) which implies that

y;y(%ly) is a 2-to-1 mapping on (FaUWV)\{3}. If y € (F,UV)\ {1},

Y1 =tyz2o0r l—ys. Soy—

; 1/ 1 yn 7 (1 - y)n - 1
then y(1 —y) € Fy and y(1 —y) # 5(1 — 5). Thus —— —==— = Fu(Ly(1 —y)) # Fu(l, 5(1 -
y—
1 n
5)) - gn—1"

For sufficiency, assume x1,x2 € F, such that F,(1,21) = F,,(1,22). Write 21 = 11 (1 — 1)

and @y = ya(1 — y2), where y1,y2 € (Fq UV). Then

Yy — (1 —g)" oy (L —ga)"

= Fn(laml) = Fru(lamQ) =

2y, —1 2y — 1
Ity = %, then
1 n
Fn(],wz) = Fn(l,[El) = Fn(l, Z) = W,

which implies that y, = % Hence z7 = .

y' - (1 —-y)"
2y — 1

Y1 =y2 or 41 = 1 —ya. Hence z1 = x5.

If y1,y2 # é since y — is a 2-to-1 mapping on (F, UV) \ {%} we have

Miscellaneous Results

Note that F,,(1,0) =1 for n > 1. Also, we have the following recursion relation for F,(1,1).
R(1,1) =0, F(1.1) =1,
Fo(1,1) = Fy 1(1,1) = Fyy_o(1,1), for n > 2.
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It follows that
F(1,1) =1, F5(1,1) =0, F4(1,1) = =1, F5(1,1) = =1, Fg(1,1) = 0.

Then we have
0 . »=0,3 (mod§6),

F,(1,L1)=¢ 1, n=1,2 (mod§6),

-1 , n=4,5 (mod6).

Theorem 11. Assume that F,,(1,2) is a PP of Fy. If p= 2, then 3|n. If p is an odd prime, then
n=1,2 (mod 6).

Proof. If p = 2, since Fy,(1,z) is a PP of F, and F,,(1,0) = 1, clearly 3|n. If p is an odd prime,

then a similar argument shows that n # 1,2 (mod 6). O

Let p be odd. We show that the n-th reversed Dickson polynomial of the third kind F,, (1, z)

can be written explicitly. For n > 0, define
n ;
fulz) = Z (‘ ) ) .
o N
Proposition 12. Let p be an odd prime. Then in F lz],

1

F.(1,z) = (5)”_1 Full — 42).

In particular, F,,(1,x) is a PP of Fy if and only if f.(z) is a PP of F,.

Proof. Let @ € . There exists y € F,2 such that 2 = (1 — y). If x # £, we have

Yy — (1 —y)"
Fn(lT)z ‘}2;771.])

Let u = 2y — 1. Then we have
o= (52 ()
) (o)
TS ()

iz0

Then we have
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Since u =2y — 1, u? = 1 — 4y(y — 1).
1yn—1
1yn—1
=(5)  falt—4a),

If x = %: since fn(o) = n, we have

Rl = g = (3) R = (3)" 50—,

Clearly, F,.(1,z) is a PP of F, if and only if f,(z) is PP of F,. O

Theorem 13. Let p be an odd prime, g a power of p, and n be a nonnegative even integer with

ptn. If Fy(1,z) is a PP of Fy, then n =0 (mod 4) and (|["5*],¢ — 1) = 1.

Proof. Assume that F},(1,z) is a PP of F,. Then by Proposition 12, f,(x) is PP of F,.
Let @y € Fy such that f,(z0) = 0. f.(0) =n #£ 0. Since f,, is a PP of Fy, g # 0.

nen =3 (4, )) o

=0

R =3 (1) @’

>0

It is easy to see that

Falzo) = 25 Tl ).

n

1
So f, is a self-reciprocal. Since f,,(zy) = 0 and z:,L) T =0, f,,,(ral) = 0. Since f, is a PP of F,

Ty = .770_15 ie. xy = +1.

fa) =3 (2_7,";1) _gnt 2,

iz0
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Therefore, g = —1.
0= fn(_l)
")

=3 ()
= (2] +1

-z 0-.=. 0
j=1 (mod 4) J j=3 (mod 4) J
1
Z [2n+1 +i l+ Z)n _ 1-71(1 o z—)n]
1
Z[ 9n+l =11 4 )" 441 —i)”} (by Eq. 5.5 in Hou 2007)
1 .
2—[(1+L) ~ (-]
Ii n
= la-ir -]
i Zn\n Ziyn

= (Ve Ty - (V2 eEy

=2:"14 [e_TW’ . e%z]

We have [e*%"’ — e%i] = 0. It follows that n =0 (mod 4).

Let (|®5%],¢— 1) =d > 1. Let € € F}, such that o(c) = d. Then
Jale) = T fu (™).

fn(e) = fn(eil)v
But e # e~ '. This contradicts the fact that f,, is a PP of F,. Hence ([251],q—1) = 1. O

1
Lemma 14. (See Hou et al. 2010) Let € # 0,1 in some extension of Fy (g odd) and let y = €t

Then y? € T, if and only if 771 =1 or 971 = 1.

Theorem 15. Let p > 3 be an odd prime and n > 0 be an integer with 3|n. If F,(1,z) is a PP of
F,, then (n,q* —1) = 3.

Proof. Since p > 3, we have ¢ = Lor — 1 (mod 3). Since 3|n, we have 3|(n,¢*> — 1). We show

that (n,¢® — 1) < 3. Assume to the contrary that (n,¢> — 1) > 3. Let
E={ceFp:c#l, ematl) — Jor a1 =11,
Bl ={eeFe:e#1, emath) — 1} 4 [{e e Frete#1, elma=1) — 1}
—{eeFp: et 1, ema bt =1y
=((ng+1)=1)+((n,g—1)-1) =0

=g+ +(n,g—1)—2.
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Since (n,q + 1)(n,q — 1) = (n,q?> — 1) > 6, we have |E| >4. Let €, €2,63 € E be distinct and

T
let y; = E:;i, i =1,2,3. By Lemma 14, y;, € F,. Since ¢; = if;z we have (i:‘i) =1, ie.

(L4 i)™ = (1 —y)™ e

Fuli?) = ; {1+ = (1—g)"} =0,

i

Since €1, €2, and €3 are distinct, y1,y2, and ys are distinct. This contradicts the fact that f,

is a PP of F,. O

COMPUTATION OF 3. F,(1,a)

We compute the sum Zaeﬂ«"q F,(1,a) in this section. The result provides a necessary con-

dition for F,,(1,z) to be a PP of F,. By Theorem 8, we have

o0

z
1 j—
Z )2 1—2z+az2

g—1

(6) = [+ X2 (=

k=11>0

)”l =1 W(,H)]

q—1

1iz [1+ZZ(

k=11>0

k
:liz[1+zl (Z]) xk]

k=1

(z —1)2-1-k 22k o
:liz[l—‘r; _ ql_ZZ(q 1) ]

)A+t q—1) :L‘k] (mod 29 — )

[

Since Fy,, (1,2) = F,,(1,2) for any 2 € I, \ {i} when ny,n > 0 and n; = ny (mod ¢% — 1), we

have the following for all @ € F \ {%}

Z F, P Z F, P

>0 n=1

q°—1

= Z Z F’*‘l‘l(q?fl)z”‘#l(qZ_])

n=1 >0

(7)

q°—1

_ Z F, Z zn+l(q2fl)

n=1 120

g -1

= ,;J;—lZFnk
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Combining (6) and (7) gives

' a1 —1—k L2k
n_ _* (z—1) z k] g 1
1 — za%-1 Z:l F, 2" = T [l + P P 2 L | for all z € T\ {1},
i.e.

qE*] q271 1 q—1

Z F, 2" = Z(Z - ) + h(z) (z — 1)(:717& L2k l.k, for all = € Fq \ {i}’

n=1 - k=1

where ’
_ g Y
M=) = (z—1)[(z —1)a-1 — 221"
Note that
h(z) = 2(2071 1)
(/«) - (z _ l)q — ZZ(q—l)(z _ 1)
_ 2 (271 - 1)
{12ty (29 — 2071 — 1)
2 (27 = 2)
(2 —29) (27— 291 —1)
(1)
B 24— 2971 -1
q’—q+1
Let Z bkzk =z (-1-(z— zq)qfl)‘
p

=1
Write k = a + 8¢ where 0 < a, § < ¢ — 1. Then we have the following.

(—1)8+1 (QE‘) ifao+8=gq,

by

-1 ifo+8=1,

otherwise.

A computation similar to (4.4) in Hong et al. 2016 yields

q =1
Z (Z Fn(l,a))z”
n=1 aclF,
q° =1 24 q—1 ;
o 1 n Z(li'zq ) 2(g—1) q—1—j ,2j 1y
=3 Rl )t = B (@) 2 - k() Y (e -1 e (1)
n=1 Jj=1
which implies
g -1
(Z F,(1 a))z”
n=1  a€ly
® . 1
q°— 2.1 q- i
_ non_ 2oz 2(q-1) _ _qye-1-d 25 (LY
_ ; e —= h(z) 2 h(z)Fl(Z 1)9-1-7 (4) ,
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where
1 ¢ —q+1

_ J
h(z) = P —] AZ] byz".

For all integers 1 < n < ¢® — 1, define

fo=3_ Fu(l,a).

a€lfy
Then from (8), we have
q’=1 n
(29— 2971 1) Z (fn - ﬁ)z"
n=1
() : .
1 a1 TN e o
= (142971 = 29) Z LI (z2(<1—1) + Z(z —1)a1 2 (4_1) ) ( Z bkzk)
k=1 j=1 k=1
n a*+q-1
Let d, = f, — pr=) and the right hand side of (9) be Z ezt
k=1
Then we have
-1 g% +q—1
(10) (24— 2971 1) Z dnz" = Z cpst.
n=1 k=1

Proposition 16. (See Hong et al. 2016) By comparing the coefficient of ' on both sides of (10),
we have the following.
di = —c;if1<j<q—1;
dy = c1 — ¢g;
digri = dit-1yg15 —dg-1)g1i11 = Clgryg f 1 <1< g=2and 1 <j<qg-—1;

dig = di—1qg — d—1)q+1 —C1q 2 <1< q—2;
g—1

dypgij =3 cpyi FO<j<q—1.

=]
The following theorem is an immediate consequence of Proposition 16 and the fact that

dy == :i: Fo(1,a) —

acl,

i
—1 "7

27?

Theorem 17. Let ¢, be defined as in (10) for 1 <k < ¢* +q — 1. Then we have the following.

I .
Z‘Fj(l,a):*()j+2j7711flgquil;

acly

Z F,(1,a) = c1 — eg;

acl,
21— j)+2j .
Y Figss = Y Fuvgrs = 2 Fuvgrsen = ciges + (QTQJ if1<1<q—2and
acly acly acly
1<j<qg-1;
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1 e .
Z Fiq = Z Fu-1yq - Z Fa-ne+1 = o + 5575 if2<1<q-2
a€lF, a€lF, a€F,

Z >—qt+i = Z Co2ti T W f0=j=<q-1

a€F,
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(1) Proposition 5 is related to the Jacobsthal polynomials by F,(1,2) = J,,(—z/2).
(2) The generating function presented in Theorem 8 is another indicator to the connection to
Jacobsthal polynomials.

(3) The third indicator is the reduction presented near the end of Theorem 10, namely,
n

on—

(4) The number set {O, 1,1,0,—-1,-1,0,1,1,..} presented in miscellaneous results, directly

F,(1,4) =

before Theorem 11, is given as sequence A010892 in the On-line Encyclopedia of Integer
Sequences. The starting point of this sequence mentioned is offset by one index. An

alternate sequence is A128834.
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